4.7 Article

Dietary Supplementation of Inulin Contributes to the Prevention of Estrogen Receptor-Negative Mammary Cancer by Alteration of Gut Microbial Communities and Epigenetic Regulations

Journal

Publisher

MDPI
DOI: 10.3390/ijms24109015

Keywords

prebiotics; inulin; breast cancer; gut microbiome; epigenetics regulations

Ask authors/readers for more resources

Breast cancer is highly prevalent in women in the US, and diet and nutrition supplementation play a role in its onset and progression. In this study, the effect of inulin-supplemented diet on preventing estrogen receptor-negative mammary carcinoma was investigated in a mouse model. The results showed that inulin supplementation significantly inhibited tumor growth and delayed tumor latency. The mice consuming inulin had a distinct gut microbiome and higher diversity of gut microbial composition compared to the control. These findings suggest that modulating microbial composition through inulin consumption could be a promising strategy for breast cancer prevention.
Breast cancer (BC) is among the most frequently diagnosed malignant cancers in women in the United States. Diet and nutrition supplementation are closely related to BC onset and progression, and inulin is commercially available as a health supplement to improve gut health. However, little is known with respect to inulin intake for BC prevention. We investigated the effect of an inulin-supplemented diet on the prevention of estrogen receptor-negative mammary carcinoma in a transgenic mouse model. Plasma short-chain fatty acids were measured, the gut microbial composition was analyzed, and the expression of proteins related to cell cycle and epigenetics-related genes was measured. Inulin supplementation greatly inhibited tumor growth and significantly delayed tumor latency. The mice that consumed inulin had a distinct microbiome and higher diversity of gut microbial composition compared to the control. The concentration of propionic acid in plasma was significantly higher in the inulin-supplemented group. The protein expression of epigenetic-modulating histone deacetylase 2 (Hdac2), Hdac8, and DNA methyltransferase 3b decreased. The protein expression of factors related to tumor cell proliferation and survival, such as Akt, phospho-PI3K, and NF-?B, also decreased with inulin administration. Furthermore, sodium propionate showed BC prevention effect in vivo through epigenetic regulations. These studies suggest that modulating microbial composition through inulin consumption may be a promising strategy for BC prevention.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available