4.7 Article

1,3,8-Triazaspiro[4.5]decane Derivatives Inhibit Permeability Transition Pores through a FO-ATP Synthase c Subunit Glu119-Independent Mechanism That Prevents Oligomycin A-Related Side Effects

Journal

Publisher

MDPI
DOI: 10.3390/ijms24076191

Keywords

permeability transition pore; Oligomycin A; c subunit of F-O-ATP synthase; small molecules; cardioprotection

Ask authors/readers for more resources

The molecular composition and activity modulation of the permeability transition pore (PTP) have been extensively studied due to their importance in ischemia reperfusion injury (IRI). The c subunit of ATP synthase (Csub) has been identified as one of the PTP-forming proteins and a target for cardioprotection. This study aims to identify equivalent residues in the human Csub sequence, validate their role in Oligomycin A-mediated PTP inhibition, and understand their relevance in the binding of 1,3,8-Triazaspiro[4.5]decane derivatives as potential inhibitors.
Permeability transition pore (PTP) molecular composition and activity modulation have been a matter of research for several years, especially due to their importance in ischemia reperfusion injury (IRI). Notably, c subunit of ATP synthase (Csub) has been identified as one of the PTP-forming proteins and as a target for cardioprotection. Oligomycin A is a well-known Csub interactor that has been chemically modified in-depth for proposed new pharmacological approaches against cardiac reperfusion injury. Indeed, by taking advantage of its scaffold and through focused chemical improvements, innovative Csub-dependent PTP inhibitors (1,3,8-Triazaspiro[4.5]decane) have been synthetized in the past. Interestingly, four critical amino acids have been found to be involved in Oligomycin A-Csub binding in yeast. However, their position on the human sequence is unknown, as is their function in PTP inhibition. The aims of this study are to (i) identify for the first time the topologically equivalent residues in the human Csub sequence; (ii) provide their in vitro validation in Oligomycin A-mediated PTP inhibition and (iii) understand their relevance in the binding of 1,3,8-Triazaspiro[4.5]decane small molecules, as Oligomycin A derivatives, in order to provide insights into Csub interactions. Notably, in this study we demonstrated that 1,3,8-Triazaspiro[4.5]decane derivatives inhibit permeability transition pores through a F-O-ATP synthase c subunit Glu(119)-independent mechanism that prevents Oligomycin A-related side effects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available