4.5 Article

Entropy minimization of the non-Newtonian bio-hybrid (Fe3O4-CuO/blood) nanofluid flow over a linear extending sheet by means of induced magnetic field

Journal

Publisher

WORLD SCIENTIFIC PUBL CO PTE LTD
DOI: 10.1142/S021797922450142X

Keywords

Maxwell fluid; Eyring-Powell; induced magnetic field; hybrid nanofluid; Cattaneo-Christov

Ask authors/readers for more resources

Entropy production is important for understanding heat loss in biological systems and has applications in cancer treatment and heat transfer in tissues. The current model investigates the effects of fluid friction irreversibility and thermal irreversibility on total entropy generation in a hybrid nanofluid.
The physiological system loses heat energy through the bloodstream to nearby cells. Such energy loss can lead to a quick death, anemia, severe hypothermia and high or low blood pressure to heart surgery. As a result, biomedical engineers and physicians are increasingly attracted to the study of entropy production to calculate the energy loss of biological systems. Furthermore, the thermodynamic state of entropy production is used to access cancer cells during chemotherapy treatment and heat transfer in tissues. The current model intends to explore the significance of the non-Fourier heat flux model on Eyring-Powell/Maxwell hybrid nanofluid (Fe3O4-CuO/blood) flow in a linear extending sheet with induced magnetic field and entropy generation. Suitable self-similarity variables are performed to convert momentum and thermal equations determined using the homotopy perturbation method into ordinary differential equations. The significance of distinct physical parameters such as thermal relaxation parameter, volume fraction, fluid parameter, magnetic Prandtl number, Biot number, Brinkman number, heat source, Eckert number, radiation and heat source on velocity, temperature, skin friction coefficient, Nusselt number, entropy production, streamlines and isotherm are represented through figures. It is recognized that the fluid friction irreversibility is comparatively higher than thermal irreversibility and highly dominates the total entropy generation. The nanoparticle volume fraction diminishes the velocity and induced magnetic field of both Eyring-Powell and Maxwell hybrid nanofluid. Fluid friction irreversibility is more in Maxwell fluid compared to the Eyring-Powell fluid.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available