4.5 Article

Effect of in situ and ex situ magnetic field on the microstructural transformation of the thermally reduced graphene oxide

Journal

Publisher

WORLD SCIENTIFIC PUBL CO PTE LTD
DOI: 10.1142/S0217979224500917

Keywords

Electrochemical exfoliation; electric field; magnetic field; thermal reduction; reduced graphene oxide; microstructural features

Ask authors/readers for more resources

The objective of this study is to electrochemically synthesize graphene in the presence of a magnetic field. The applied magnetic field significantly affects the surface height, roughness, microstructure, and surface state of the synthesized graphene. However, it has little effect on the phase, lattice parameter, and thermal stability.
The control over microstructural characteristics of graphene oxide (GO) is one of the most serious issues in the domain of graphene synthesis as this affects the graphene's properties, and functionality. In this study, the primary objective is electrochemical synthesis graphene in the presence of magnetic field that is applied externally. During the synthesis process, the magnetic field was applied in a direction that was perpendicular to the applied potential. This causes the electrolyte to spin flow around the cell. Subsequently, the goal is to provide a comparative analysis between the microstructural characteristics of graphene that has been synthesized in situ and ex situ magnetic field. The cylindrical graphite was used as an anode, and a carbon electrode that had been recovered from a waste dry cell battery was used as a cathode. The pre-oxidized graphite was sonicated (synthesized under magnetic field, and without magnetic field) in sterilized water for 10min with a probe-type sonicator and thermally reduced at same temperature i.e., 850? followed by furnace cooling. The findings of the Raman spectroscopy, atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) characterizations indicate that the magnetic flux that was applied has a significant influence on the surface height and roughness, microstructure, and surface state, a structural disorder in comparison to when there was no magnetic field applied to the thermally reduced graphene oxide (rGO). On the other side, from the data obtained by XRD and TGA analysis, the applied magnetic field seems to have very little effect on phase, lattice parameter and thermal stability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available