4.7 Article

Buckling-regulated origami materials with synergy of deployable and undeployable features

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijmecsci.2023.108167

Keywords

Origami; Metamaterials; Additive manufacturing; Damage resistance; Buckling

Ask authors/readers for more resources

This paper proposes a buckling-regulated origami material by synergy design, which incorporates three buckling-regulated mechanisms to control global buckling, local buckling, and high energy-absorbing deformation. The manufactured origami materials show anticipated properties, and it may inspire new innovations in designing other multi-functional metamaterials.
Origami is an emerging class of structural materials that can display remarkable physical and mechanical properties due to its unique deployability, while simple combination of deployable and undeployable features lead to more fantastic mechanical properties because of the extended design freedom. To further exploit the application potential of multiple origami features, a buckling-regulated origami material is proposed in this work by synergy design instead of simple combination of different origami features. In details, three buckling-regulated mechanisms are incorporated into the origami materials using synergy design, i.e., controlling global bulking via deployable folding, controlling local buckling through cell structure arrangement, and reproducing high energy-absorbing deformation mode using undeployable features. According to the synergic effect of multiple origami features, the buckling-regulated origami material improves both the resistance of deployable origami and instability of undeployable deformation. To validate this, the corresponding origami materials are manufactured by 3D printing technology, and experimentally tested. The manufactured origami materials show anticipated properties under quasi-static compression, i.e., high resistance and protracted steady plateau. Furthermore, due to the structural characteristics of origami and the tailorability of mechanical prop-erties, it may inspire new innovations in designing other multi-functional metamaterials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available