4.7 Article

Bio-inspired vertex modified lattice with enhanced mechanical properties

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijmecsci.2022.108081

Keywords

Lattice structure; Energy absorption; Specific strength; Plateau stress; Specific energy absorption

Ask authors/readers for more resources

Inspired by the skeletal system of deep-sea glass sponge, a new structure called vertex modified body-centered cubic (VM-BCC) lattice was proposed, which outperforms conventional lattices in terms of strength, deformation stability, and energy absorption capacity. This novel bio-inspired lattice enriches the design space for lightweight energy absorbers and has potential applications in the fields of national defense, aerospace, navigation, and medical implants.
Conventional lattices usually exhibit tradeoff relations between their strength, deformation stability and energy absorption capacity. Here, inspired by the local structure characters of the skeletal system of deep-sea glass sponge, a new structure called vertex modified body-centered cubic (VM-BCC) lattice was proposed. The me-chanical properties of the proposed lattices were compared with those of the conventional BCC, Octet and face-centered cubic (FCC) lattices. The results revealed that the BCC, Octet, and FCC lattices correspond to the highest deformation stability, the largest energy absorption and the highest strength among the three conventional lattices investigated, respectively, while the proposed VM-BCC lattice outperforms them all in each of the three properties. Remarkably, the proposed lattice made of stainless-steel possesses strength and energy-absorbing capacity close to that of lattices and foams made of titanium alloy. Moreover, a parametric numerical simula-tion study was carried out to ascertain the effect of the deviation coefficient, a geometric parameter of VM-BCC lattice on the mechanical properties and the deformation pattern. It indicates that the VM-BCC lattice with an appropriate deviation coefficient can effectively suppress the expansion of shear bands, resulting in high and stable stress response. This work proposes a novel bio-inspired lattice and enriches the design space for light-weight energy absorbers, which have prospective application potential in the fields of national defense, aero-space, navigation, and medical implants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available