4.7 Article

Impact of wettability on storage and recovery of hydrogen gas in the lesueur sandstone formation (Southwest hub project, Western Australia)

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 48, Issue 61, Pages 23581-23593

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2023.03.131

Keywords

Hydrogen geo-storage; Storage capacity; Recovery rate; Wettability alteration; NMR monitoring

Ask authors/readers for more resources

Geological storage is a new technology that stores hydrogen gas in depleted reservoirs. The presence of Humic acid can alter the wettability of the reservoir rocks, leading to a decrease in the initial hydrogen saturation and residual hydrogen trapping.
Geological storage has been proposed as a new technology to temporarily store significant amounts of hydrogen (H2) gas in depleted gas reservoirs, underground salt caverns, or saline aquifers. Often, such subsurface reservoirs naturally contain trace amounts of organic acids, and these compounds can considerably alter the wettability of reservoir rocks, causing them to become less water-wet. We carried out Molecular Dynamics (MD) simulations of contact angles in a quartz-brine-H2 system to evaluate wettability in realistic subsurface situations. MD simulations suggest that Humic acid makes quartz more hydrophobic, which can affect the overall behaviour of the storage reservoir. For the first time, this effect was experimentally investigated for a natural sandstone reservoir from the South West Hub Project, i.e., the Lesueur Sandstone (LS) formation. Multi-stage core flooding experiments were conducted on the same LS plug to investigate the impact of wettability alteration on initial and residual hydrogen saturation/trapping at depth. First, consecutive brine-H2 drainage-imbibition cycles were carried out on the natural sample; the result indicated that the rock-brine-H2 system was essentially water-wet. Then, the sample was aged in Humic acid with a molarity of 10-2 M for 42 days at 5 & DEG;C and 0.1 MPa. The wettability of the storage system shifted toward a less water-wet state, i.e., more hydrophobic. As a result of Humic acid ageing, the initial hydrogen saturation reduced from 29% to 15%, and the residual hydrogen trapping reduced from 23% to 11%. This is attributed to a change induced in the capillary force (i.e., snap-off) controlled by wettability and pore size. In addition, the wettability change induced by Humic acid increased the & COPY; 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available