4.7 Article

Prediction of rolling contact fatigue crack propagation in bearing steels using experimental crack growth data and linear elastic fracture mechanics

Journal

INTERNATIONAL JOURNAL OF FATIGUE
Volume 168, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ijfatigue.2022.107449

Keywords

Rolling contact fatigue; Pitting; Crack propagation; Rolling bearings; Gears

Ask authors/readers for more resources

This paper investigates the application of linear elastic fracture mechanics (LEFM) principles in predicting the crack propagation of rolling contact fatigue (RCF) in machine elements such as rolling bearings and gears. Experimental tests are conducted on AISI 52100 bearing steel roller specimens to measure crack propagation rates and establish crack geometry. A numerical finite element model based on LEFM methods is developed to predict stress intensity factors (SIFs) during over-rolling, considering factors such as Hertzian contact stresses, contact friction, and crack face friction. The results show that LEFM can accurately predict the growth of RCF cracks and provide insights into the dominant propagation mode and the effects of crack face friction. The findings contribute to the development of tools for predicting the remaining useful life of machine components, enhancing the reliability of mechanical systems.
Rolling contact fatigue (RCF) is a major life limiting factor for machine elements that employ non-conformal, rolling sliding, lubricated contacts such as rolling bearings and gears. This paper explores the application of linear elastic fracture mechanics (LEFM) principles, as commonly used in structural fatigue, for prediction of RCF crack propagation. A triple-disc contact fatigue machine is used to generate RCF cracks of varying lengths in AISI 52100 bearing steel roller specimens. Crack propagation rates across the surface are measured using optical inspection of test specimens and the final crack geometry is established through specimen sectioning. A nu-merical finite element model of surface breaking RCF cracks based on LEFM methods is devised to predict the evolution of stress intensity factors (SIFs) during over-rolling of the contact over the experimentally observed crack geometries. The model employs a suitable fracture mechanics mesh to resolve stresses at the crack tip and accounts for Hertzian contact stresses, contact friction and crack face friction. Potential effects of lubricant pressurisation within the crack are not modelled. The predicted SIFs are then related to the experimentally measured crack propagation rates to establish the applicability of the LEFM principles to RCF crack propagation. Results show that LEFM can be used to predict the growth of surface braking RCF cracks. For cracks longer than about 100 mu m, a Paris law relationship with the stress intensity exponent of about 4 is derived. Mode II was seen to be the dominant mode of propagation for surface braking RCF cracks. Mode I SIFs are much smaller but can exhibit significant values when the contact is located just ahead of the crack mouth. Decreasing the crack face friction significantly increases mode II stress intensity suggesting that this is one important mechanism by which lubricant entry into the surface braking crack can accelerate its propagation. The findings can help in improving the reliability of mechanical systems by supporting the development of new tools for prediction of remaining useful life of machine components such as bearings and gears.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available