4.7 Article

An extended micromechanics method for probing interphase properties in polymer nanocomposites

Journal

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS
Volume 95, Issue -, Pages 663-680

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmps.2016.05.002

Keywords

Micromechanics; Overlapping geometries; Boolean-Poisson model; Polymer composite; Viscoelasticity; Interphase; Inverse problem

Funding

  1. AFOSR [FA9550-14-1-0032]
  2. U.S. Department of Energy [DE-AC52-07NA27344 (LLNL-JRNL-673797)]

Ask authors/readers for more resources

Inclusions comprised on filler particles and interphase regions commonly form complex morphologies in polymer nanocomposites. Addressing these morphologies as systems of overlapping simple shapes allows for the study of dilute particles, clustered particles, and interacting interphases all in one general modeling framework. To account for the material properties in these overlapping geometries, weighted-mean and additive overlapping conditions are introduced and the corresponding inclusion-wise integral equations are formulated. An extended micromechanics method based on these overlapping conditions for linear elastic and viscoelastic heterogeneous material is then developed. An important feature of the proposed approach is that the effect of both the geometric overlapping (clustered particles) and physical overlapping (interacting interphases) on the effective properties can be distinguished. We apply the extended micromechanics method to a viscoelastic polymer nanocomposite with interphase regions, and estimate the properties and thickness of the interphase region based on experimental data for carbon-black filled styrene butadiene rubbers. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available