4.7 Article

Starch intrinsic crystals affected the changes of starch structures and digestibility during microwave heat-moisture treatment

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.ijbiomac.2023.124297

Keywords

Starch reassembly; Starch structures; Starch digestibility; Microwave treatment; Crystal seeds

Ask authors/readers for more resources

The crystalline structure and moisture content of starch play a crucial role in its structural and digestibility changes during microwave heat-moisture treatment (MHMT). Starches with lower A-type crystal content (4.13%-6.18%) and moisture content of 10%-20% exhibited more ordered structures and lower digestibility after treatment.
The structural and functional changes of starch during hydrothermal treatment are influenced by its intrinsic properties. However, how the intrinsic crystalline structures of starch affect changes in structure and digestibility during microwave heat-moisture treatment (MHMT) has not been well understood. In this study, we prepared starch samples with varying moisture content (10 %, 20 %, and 30 %) and A-type crystal content (4.13 %, 6.81 %, and 16.35 %) and investigated the changes in their structures and digestibility during MHMT. Results showed that starch with a high A-type crystal content (16.35 %) and moisture levels of 10 % to 30 % exhibited less ordered structures after MHMT, while starches with lower A-type crystal content (4.13 % to 6.18 %) and moisture content of 10 % to 20 % showed more ordered structures after treatment; but less ordered structures when the moisture content was 30 %. All starch samples had lower digestibility after MHMT and cooking; however, starches with lower A-type crystal content (4.13 % to 6.18 %) and moisture content of 10 % to 20 % displayed significantly lower digestibility after treatment compared to modified starches. Accordingly, starches contained content of A-type crystals of 4.13 %-6.18 % and moisture of 10 %-20 % potentially had better reassembly behaviors during the MHMT to slow starch digestibility in a larger magnitude.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available