4.7 Article

Zinc oxide loaded chitosan-elastin-sodium alginate nanocomposite gel using freeze gelation for enhanced adipose stem cell proliferation and antibacterial properties

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.ijbiomac.2023.123519

Keywords

Zinc oxide nanoparticles; Nanocomposite; Adipose stem cells

Ask authors/readers for more resources

Hydrogels are used in regenerative medicine for their biocompatibility. This study aimed to develop a porous hydrogel composite scaffold for chronic skin wound repair. The addition of zinc oxide nanoparticles to the chitosan-based hydrogel showed good antibacterial activity and demonstrated compatibility with human adipose stem cells. The findings suggest potential clinical applications for tissue engineering and chronic wound treatment.
Hydrogels have been the material of choice for regenerative medicine applications due to their biocompatibility that can facilitate cellular attachment and proliferation. The present study aimed at constructing a porous hydrogel composite scaffold (chitosan, sodium alginate and elastin) for the repair of chronic skin wounds. Chitosan-based hydrogel incorporating varying concentrations of zinc oxide nanoparticles i.e. ZnO-NPs (0, 0.001, 0.01, 0.1 and 1 % w/w) as the antimicrobial agent tested against Escherichia coli (E.coli) and Staphylococcus aureus (S. aureus) exhibited good antibacterial activities. ZnO-NPs were characterized by UV visible spectroscopy, Scanning electron microscopy (SEM) analysis, Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. Fabricated gels were characterized by SEM analysis, FTIR, XRD, swelling ratio, degradation behavior and controlled release kinetics of ZnO-NPs. In vitro cytocompatibility of the composite was investigated using human adipose stem cells (ADSCs) by MTT and lactate dehydrogenase (LDH) assay, further assessed by SEM analysis and PKH26 staining. The SEM and XRD analysis confirmed the successful loading of ZnO-NPs into these scaffolds. Fluorescence PKH26 stained images and SEM analysis of ADSCs seeded scaffolds revealed biocompatible nature. The findings suggested that the developed composite gels have potential clinically for tissue engineering and chronic wound treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available