4.7 Article

Photocatalytic dye degradation efficiency and reusability of aluminium substituted nickel ferrite nanostructures for wastewater remediation

Journal

INORGANIC CHEMISTRY COMMUNICATIONS
Volume 150, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.inoche.2023.110532

Keywords

Hydrothermal synthesis; Nickel ferrite; Reitveld refinement; Methyl Blue; Methyl Orange and First order kinetics

Ask authors/readers for more resources

In this study, nickel ferrite and aluminum-doped nickel ferrite were synthesized using the hydrothermal method. The cubic ferrite structure with space group Fd3m was confirmed by XRD analysis. The functional groups of the nanoparticles were analyzed using FTIR and FT-Raman spectroscopy. FESEM and EDX mapping analyses were used to examine the morphology and elemental composition of the products. The prepared nanoparticles showed good photocatalytic activity against methyl blue and methyl orange under visible-light irradiation.
In this study, nickel ferrite and aluminum-doped nickel ferrite were synthesized using the hydrothermal method. The cubic ferrite structure with space group Fd3m was confirmed by powder X-ray diffraction (XRD) analysis. The functional groups of the nanoparticles were analyzed using FTIR and FT-Raman spectroscopy. The morphology and elemental composition of the products were examined using FESEM and EDX mapping analyses. The presence of O, Fe, and Ni, as well as the presence of Al in the doped sample, was confirmed by EDX in all the prepared nanoferrites, and TEM analaysis confirmed the shape and purity of the prepared samples. BET surface areas were found to be 46.39, 70.43, and 111.68 m2/g for samples NF, NFA3, and NFA6, respectively. The saturation magnetization was calculated to be 58.08, 38.41, and 28.15 emu/g, for the samples NF, NFA3, and NFA6 respectively. Finally, the prepared nanoparticles were used to determine their photocatalytic activity against methyl blue (MB) and methyl orange (MO) under visible-light irradiation. The photocatalytic activity of the NiAl0.6Fe1.4O4 NPs was found to be MB (97.48 %) and MO (93.04 %). The results showed that the aluminumdoped nickel ferrite (NiAl0.6Fe1.4O4) exhibited good photocatalytic activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available