4.7 Article

Unraveling the Molecular Mechanism of S-Nitrosation Mediated by N-Acetylmicroperoxidase-11

Journal

INORGANIC CHEMISTRY
Volume 62, Issue 14, Pages 5630-5643

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.inorgchem.3c00180

Keywords

-

Ask authors/readers for more resources

Conversion of NO to stable S-nitrosothiols is a significant biological strategy of NO storage and signal transduction, and metal ions and metalloproteins can promote the formation of S-nitrosothiols from NO. This study investigates the incorporation of NO to biologically relevant thiols using a model protein heme center. The formation of S-nitrosothiols is confirmed under anaerobic conditions, and the molecular mechanism involving N-coordinated S-nitrosothiols is elucidated. This work highlights the importance of reversible NO binding as a biological strategy for NO storage.
Conversion of NO to stable S-nitrosothiols is perceived as a biologically important strategy of NO storage and a signal transduction mechanism. Transition-metal ions and metalloproteins are competent electron acceptors that may promote the formation of S-nitrosothiols from NO. We selected N-acetylmicroperoxidase (AcMP-11), a model of protein heme centers, to study NO incorporation to three biologically relevant thiols (glutathione, cysteine, and N-acetylcysteine). The efficient formation of S-nitrosothiols under anaerobic conditions was confirmed with spectrofluorimetric and electrochemical assays. AcMP-11-assisted incorporation of NO to thiols occurs via an intermediate characterized as an N-coordinated S-nitrosothiol, (AcMP-11)Fe2+(N(O)SR), which is efficiently converted to (AcMP-11)Fe2+(NO) in the presence of NO excess. Two possible mechanisms of S-nitrosothiol formation at the heme-iron were considered: a nucleophilic attack on (AcMP-11)Fe2+(NO+) by a thiolate and a reaction of (AcMP-11)Fe3+(RS) with NO. Kinetic studies, performed under anaerobic conditions, revealed that the reversible formation of (AcMP-11)Fe2+(N(O)SR) occurs in a reaction of RS- with (AcMP-11)Fe2+(NO+) and excluded the second mechanism, indicating that the formation of (AcMP-11)Fe3+(RS) is a dead-end equilibrium. Theoretical calculations revealed that N-coordination of RSNO to iron, forming (AcMP-11)Fe2+(N(O)SR), shortens the S-N bond and increases the complex stability compared to S-coordination. Our work unravels the molecular mechanism of heme-iron-assisted interconversion of NO and low-molecular-weight thiols to S-nitrosothiols and recognizes the reversible NO binding in the form of a heme-Fe2+(N(O)SR) motif as an important biological strategy of NO storage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available