4.3 Article

Carbon flux of trophic-functional groups within the colonization process of biofilm-dwelling ciliates in marine ecosystems

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0025315416000291

Keywords

biofilm-dwelling ciliates; trophic-functional group; colonization dynamics; artificial substratum; carbon flux; marine ecosystem

Funding

  1. Natural Science Foundation of China [41076089]

Ask authors/readers for more resources

Biofilm-dwelling ciliates are a primary component of a biofilm, and play an important role in the functioning of microbial food webs by mediating carbon and energy flux into benthos from plankton. The carbon flux of biofilm-dwelling ciliates was studied at different trophic-functional levels within the colonization process in coastal waters of the Yellow Sea, northern China from May to June 2015. Samples were collected, using a glass slide method, at the time intervals of 1, 3, 7, 10, 14, 21 and 28 days from depths of 1 and 3 m. The carbon biomass of both total ciliates and all trophic-functional groups increased following the logistic growth curve model. During the whole colonization period, the bacterivores and non-selectives were generally the primary contributor to the carbon flux in young samples (<14 days), while the algivores and raptors predominatedmature samples (14-28 days) at both depths. In terms of mature samples, however, the non-selectives and algivores were the primary contributors at a depth of 1 m, while the raptors accounted for primary contributions to the carbon flux at a depth of 3 m. Although the times to 50% maximum carbon biomasses were generally ranged 24 days at both depths, the maximum carbon biomasses were significantly higher at depth of 3 m than at 1 m. These results may provide useful information for ecological research on carbon flux from plankton to benthos in marine ecosystems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available