4.7 Article

A Soft-Rigid Hybrid Gripper With Lateral Compliance and Dexterous In-Hand Manipulation

Journal

IEEE-ASME TRANSACTIONS ON MECHATRONICS
Volume 28, Issue 1, Pages 104-115

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TMECH.2022.3195985

Keywords

Grippers; Actuators; Grasping; Bellows; Robots; Muscles; Kinematics; Dual-arm manipulation; grasping dexterity; in-hand manipulation; modeling and control; soft grippers

Ask authors/readers for more resources

Soft grippers with hybrid design, combining soft actuators and rigid constraints, have gained attention for their improved safety, dexterity, and adaptability. This work presents a new hybrid gripper design inspired by the human metacarpophalangeal (MCP) joint, featuring eight independent muscles. Experimental results demonstrate the novel features enabled by adding MCP complexity, such as in-hand manipulation and lateral passive compliance. The prototype gripper, utilizing lightweight pneumatic bellows soft actuators, achieves excellent grasping adaptability and can grasp objects over 20 times its weight.
Soft grippers are receiving growing attention due to their compliance-based interactive safety and dexterity. Hybrid gripper with soft actuators enhanced by rigid constraints is receiving growing attention in soft gripper design. With rigid structural components actuated by soft actuators, they could achieve excellent grasping adaptability and payload while also being easy to model and control with conventional kinematics. However, existing works were mostly focused on achieving superior payload and perception with simple planar workspaces, resulting in far less dexterity compared with conventional grippers. In this work, we took inspiration from the human metacarpophalangeal (MCP) joint and proposed a new hybrid gripper design with eight independent muscles. It was shown that adding the MCP complexity was critical in enabling a range of novel features in the hybrid gripper, including in-hand manipulation, lateral passive compliance, as well as new control modes. A prototype gripper was fabricated and tested on our proprietary dual-arm robot platform with vision-guided grasping. With very lightweight pneumatic bellows soft actuators, the gripper could grasp objects over 20 times its weight with lateral compliance. Using the dual-arm platform, highly anthropomorphic dexterous manipulations were demonstrated using two hybrid grippers, from tug of war on a rigid rod to passing a soft towel between two grippers using in-hand manipulation. Matching the novel features and performance specifications of the proposed hybrid gripper, the underlying modeling, actuation, control, and experimental validation details were also presented, offering a promising approach to achieving enhanced dexterity, strength, and compliance in robotic grippers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available