4.6 Article

Optical Coherence Tomography of Tumor Spheroids Identifies Candidates for Drug Repurposing in Ovarian Cancer

Journal

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING
Volume 70, Issue 6, Pages 1891-1901

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TBME.2022.3231835

Keywords

Optical coherence tomography; multicellular tumor spheroid; ovarian cancer; 2-Methoxyestradiol; AZD1208; R-ketorolac

Ask authors/readers for more resources

This study utilized a noninvasive optical imaging tool to monitor the growth and therapeutic responses of multicellular tumor spheroids (MCTs) in vivo, evaluating the potential applications of three FDA-approved drugs for ovarian cancer therapy.
Objective: Multicellular tumor spheroids (MCTs) are indispensable models for evaluating drug efficacy for precision cancer therapeutic strategies as well as for repurposing FDA-approved drugs for ovarian cancer. However, current imaging techniques cannot provide effective monitoring of pathological responses due to shallow penetration and experimentally operative destruction. We plan to utilize a noninvasive optical imaging tool to achieve in vivo longitudinal monitoring of the growth of MCTs and therapeutic responses to repurpose three FDA-approved drugs for ovarian cancer therapy. Methods: A swept-source optical coherence tomography (SS-OCT) system was used to monitor the volume growth of MCTs over 11 days. Three inhibitors of 2-Methoxyestradiol (2-ME), AZD1208, and R-Ketorolac (R-keto) with concentrations of 1, 10, and 25 mu M were employed to treat ovarian MCTs on day 5. Three-dimensional (3D), intrinsic optical attenuation contrast, and degree of uniformity were applied to analyze the therapeutic effect of these inhibitors on ovarian MCTs. Results: We found that 2-ME, AZD1208, and R-keto with concentration of 10 and 25 mu M significantly inhibited the volume growth of ovarian MCTs. There was no effect to necrotic tissues from all concentrations of 2-ME, AZD1208, and R-keto inhibitors from our OCT results. 2-ME and AZD1208 inhibited the growth of high uniformity tissues within MCTs and higher concentrations provided more significant inhibitory effects. Conclusion: Our results indicated that OCT was capable and reliable to monitor the therapeutic effect of inhibitors to ovarian MCTs and it can be used for the rapid characterization of novel therapeutics for ovarian cancers in the future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available