4.7 Article

A Primer on Rate-Splitting Multiple Access: Tutorial, Myths, and Frequently Asked Questions

Journal

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS
Volume 41, Issue 5, Pages 1265-1308

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSAC.2023.3242718

Keywords

Interference; NOMA; Multiaccess communication; Interference cancellation; Downlink; 5G mobile communication; Next generation networking; Rate-splitting; rate-splitting multiple access; next generation multiple access; non orthogonal multiple access; space division multiple access; multi-user MIMO; interference management; 6G

Ask authors/readers for more resources

Rate-Splitting Multiple Access (RSMA) is evaluated for its importance in next generation communication systems as a powerful multiple access and interference management strategy. It offers numerous benefits and applications, addressing fundamental problems such as interference management and providing enhanced efficiency, universality, flexibility, robustness, and reliability. In 6G, RSMA can be applied to a wide range of scenarios and applications.
Rate-Splitting Multiple Access (RSMA) has emerged as a powerful multiple access, interference management, and multi-user strategy for next generation communication systems. In this tutorial, we depart from the orthogonal multiple access (OMA) versus non-orthogonal multiple access (NOMA) discussion held in 5G, and the conventional multi-user linear precoding approach used in space-division multiple access (SDMA), multi-user and massive MIMO in 4G and 5G, and show how multi-user communications and multiple access design for 6G and beyond should be intimately related to the fundamental problem of interference management. We start from foundational principles of interference management and rate-splitting, and progressively delineate RSMA frameworks for downlink, uplink, and multi-cell networks. We show that, in contrast to past generations of multiple access techniques (OMA, NOMA, SDMA), RSMA offers numerous benefits: 1) enhanced spectral, energy and computation efficiency; 2) universality by unifying and generalizing OMA, SDMA, NOMA, physical-layer multicasting, multi-user MIMO under a single framework that holds for any number of antennas at each node (SISO, SIMO, MISO, and MIMO settings); 3) flexibility by coping with any interference levels (from very weak to very strong), network loads (underloaded, overloaded), services (unicast, multicast), traffic, user deployments (channel directions and strengths); 4) robustness to inaccurate channel state information (CSI) and resilience to mixed-critical quality of service; 5) reliability under short channel codes and low latency. We then discuss how those benefits translate into numerous opportunities for RSMA in over forty different applications and scenarios of 6G, e.g., multi-user MIMO with statistical/quantized CSI, FDD/TDD/cell-free massive MIMO, millimeter wave and terahertz, cooperative relaying, physical layer security, reconfigurable intelligent surfaces, cloud-radio access network, internet-of-things, massive access, joint communication and jamming, non-orthogonal unicast and multicast, multigroup multicast, multibeam satellite, space-air-ground integrated networks, unmanned aerial vehicles, integrated sensing and communications, grant-free access, network slicing, cognitive radio, optical/visible light communications, mobile edge computing, machine/federated learning, etc. We finally address common myths and answer frequently asked questions, opening the discussions to interesting future research avenues. Supported by the numerous benefits and applications, the tutorial concludes on the underpinning role played by RSMA in next generation networks, which should inspire future research, development, and standardization of RSMA-aided communication for 6G.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available