4.2 Article

Patterns of Cortical and Subcortical Amyloid Burden across Stages of Preclinical Alzheimer's Disease

Journal

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S1355617716000928

Keywords

Dementia; Beta-amyloid peptides; Florbetapir; Positron emission tomography; Neuropsychology; Biomarkers; Alzheimer disease

Funding

  1. NIH [R01 AG049810, K24 AG026431, P50 AG05131]
  2. Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant) [U01 AG024904]
  3. DOD ADNI (Department of Defense) [W81XWH-12-2-0012]
  4. National Institute on Aging
  5. National Institute of Biomedical Imaging and Bioengineering
  6. AbbVie
  7. Alzheimer's Association
  8. Alzheimer's Drug Discovery Foundation
  9. Araclon Biotech
  10. BioClinica, Inc.
  11. Biogen
  12. Bristol-Myers Squibb Company
  13. CereSpir, Inc.
  14. Eisai Inc.
  15. Elan Pharmaceuticals, Inc.
  16. Eli Lilly and Company
  17. EuroImmun
  18. F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.
  19. Fujirebio
  20. GE Healthcare
  21. IXICO Ltd.
  22. Janssen Alzheimer Immunotherapy Research & Development, LLC.
  23. Johnson & Johnson Pharmaceutical Research & Development LLC.
  24. Lumosity
  25. Lundbeck
  26. Merck Co., Inc.
  27. Meso Scale Diagnostics, LLC.
  28. NeuroRx Research
  29. Neurotrack Technologies
  30. Novartis Pharmaceuticals Corporation
  31. Pfizer Inc.
  32. Piramal Imaging
  33. Servier
  34. Takeda Pharmaceutical Company
  35. Transition Therapeutics
  36. Canadian Institutes of Health Research

Ask authors/readers for more resources

Objectives: We examined florbetapir positron emission tomography (PET) amyloid scans across stages of preclinical Alzheimer's disease (AD) in cortical, allocortical, and subcortical regions. Stages were characterized using empirically defined methods. Methods: A total of 312 cognitively normal Alzheimer's Disease Neuroimaging Initiative participants completed a neuropsychological assessment and florbetapir PET scan. Participants were classified into stages of preclinical AD using (1) a novel approach based on the number of abnormal biomarkers/cognitive markers each individual possessed, and (2) National Institute on Aging and the Alzheimer's Association (NIA-AA) criteria. Preclinical AD groups were compared to one another and to a mild cognitive impairment (MCI) sample on florbetapir standardized uptake value ratios (SUVRs) in cortical and allocortical/subcortical regions of interest (ROIs). Results: Amyloid deposition increased across stages of preclinical AD in all cortical ROIs, with SUVRs in the later stages reaching levels seen in MCI. Several subcortical areas showed a pattern of results similar to the cortical regions; however, SUVRs in the hippocampus, pallidum, and thalamus largely did not differ across stages of preclinical AD. Conclusions: Substantial amyloid accumulation in cortical areas has already occurred before one meets criteria for a clinical diagnosis. Potential explanations for the unexpected pattern of results in some allocortical/subcortical ROIs include lack of correspondence between (1) cerebrospinal fluid and florbetapir PET measures of amyloid, or between (2) subcortical florbetapir PET SUVRs and underlying neuropathology. Findings support the utility of our novel method for staging preclinical AD. By combining imaging biomarkers with detailed cognitive assessment to better characterize preclinical AD, we can advance our understanding of who is at risk for future progression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available