4.5 Review

Mosquito gene targeted RNAi studies for vector control

Journal

FUNCTIONAL & INTEGRATIVE GENOMICS
Volume 23, Issue 2, Pages -

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s10142-023-01072-6

Keywords

RNA interference; Vector control; Anopheles; Aedes; Culex; Delivery methods

Ask authors/readers for more resources

Mosquitoes are important vectors for many diseases, and traditional control strategies have failed. However, RNA interference technology may be an effective method to control vector mosquitoes without disrupting the natural ecosystem.
Vector-borne diseases are serious public health concern. Mosquito is one of the major vectors responsible for the transmission of a number of diseases like malaria, Zika, chikungunya, dengue, West Nile fever, Japanese encephalitis, St. Louis encephalitis, and yellow fever. Various strategies have been used for mosquito control, but the breeding potential of mosquitoes is such tremendous that most of the strategies failed to control the mosquito population. In 2020, outbreaks of dengue, yellow fever, and Japanese encephalitis have occurred worldwide. Continuous insecticide use resulted in strong resistance and disturbed the ecosystem. RNA interference is one of the strategies opted for mosquito control. There are a number of mosquito genes whose inhibition affected mosquito survival and reproduction. Such kind of genes could be used as bioinsecticides for vector control without disturbing the natural ecosystem. Several studies have targeted mosquito genes at different developmental stages by the RNAi mechanism and result in vector control. In the present review, we included RNAi studies conducted for vector control by targeting mosquito genes at different developmental stages using different delivery methods. The review could help the researcher to find out novel genes of mosquitoes for vector control.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available