4.7 Article

Production of aviation fuel with negative emissions via chemical looping gasification of biogenic residues: Full chain process modelling and techno-economic analysis

Journal

FUEL PROCESSING TECHNOLOGY
Volume 241, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.fuproc.2022.107585

Keywords

Chemical looping gasification; Techno-economic analysis; Oxygen carrier; Aspen Plus modelling; Aviation fuel; Negative emissions

Ask authors/readers for more resources

The second-generation bio aviation fuel production via Chemical Looping Gasification (CLG) combined with downstream Fischer-Tropsch (FT) synthesis is a possible way to decarbonize aviation sector. This study models the full chain process of biomass to liquid fuel (BtL) with LD-slag and Ilmenite as oxygen carriers using Aspen Plus software, validates the results with experiments, and conducts a techno-economic analysis of the process.
The second-generation bio aviation fuel production via Chemical Looping Gasification (CLG) of biomass com-bined with downstream Fischer-Tropsch (FT) synthesis is a possible way to decarbonize aviation sector. The CLG process has the advantage of producing undiluted syngas without the use of an air-separation unit (ASU) and improved syngas yield compared to the conventional gasification processes. This study is based on modelling the full chain process of biomass to liquid fuel (BtL) with LD-slag and Ilmenite as oxygen carriers using Aspen Plus software, validating the model results with experimental studies and carrying out a techno-economic analysis of the process. For the gasifier load of 80 MW based on LHV of fuel entering the gasifier, the optimal model predicts that the clean syngas has an energy content of 8.68 MJ/Nm3 with a cold-gas efficiency of 77.86%. The optimized model also estimates an aviation fuel production of around 340 bbl/day with 155 k-tonne of CO2 captured every year and conversion efficiency of biomass to FT-crude of 38.98%. The calculated Levelized Cost of Fuel (LCOF) is 35.19 $ per GJ of FT crude, with an annual plant profit (cash inflow) of 11.09 M$ and a payback period of 11.56 years for the initial investment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available