4.7 Article

Metal-organic frameworks-based advanced catalysts for anthropogenic CO2 conversion toward sustainable future

Journal

FUEL PROCESSING TECHNOLOGY
Volume 244, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.fuproc.2023.107705

Keywords

CO 2 reduction; Metal -organic framework -based materials; Catalysts; Sustainable Future; Ligand engineering

Ask authors/readers for more resources

The increasing concentration of CO2 in the atmosphere due to human activity poses serious threats to humans and the environment. Electrochemical CO2 reduction to value-added chemicals is a highly effective approach for lowering environmental CO2 concentrations, but it requires robust electrocatalysts. Recently, MOF-based materials have been extensively studied as an emerging class of electrocatalysts with high porosity, large surface area, stability, and chemical tunability. This article reviews the fundamentals of CO2 reduction and current developments in MOF-based electrocatalysts, aiming to promote the development of more effective materials for CO2 abatement and raise awareness of the potential of MOFs in addressing environmental sustainability challenges.
The rapidly rising concentration of carbon dioxide (CO2) in the atmosphere as a result of human activity poses serious threats and alarming situations not only to humans but also to our environment. Within the context of this agenda, electrochemical CO2 reduction to value-added chemicals is one of the most effective approaches to lowering environmental CO2 concentrations. However, this approach requires highly robust electrocatalysts; therefore, in the last few years, there has been a dramatic increase in the demand for the synthesis and development of efficient electrocatalysts. Recently, metal-organic framework (MOF)-based materials, having high porosity, large surface area, stability, and chemical tunability, have been extensively studied as an emerging class of electrocatalysts for CO2 reduction reaction (CO2RR). In this article, we reviewed the fundamentals of CO2RR, including its mechanism and activity descriptors, and current developments in MOF-based electrocatalysts for CO2RR are described along with their underlying chemistry. Finally, we explore the current difficulties and potential future developments of MOFs for CO2RR. It is intended that this review will aid in the development of ever-more effective MOF-based materials for CO2 abatement and raise awareness of the need for additional work to be done in order to explore MOFs' potential for tackling important environmental sustainability challenges. Particularly, ligand engineering in MOFs remains an important topic for developing a highly efficient CO2RR catalyst.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available