4.7 Article

Co-circularity of spent coffee grounds and polyethylene via co-pyrolysis: Characteristics, kinetics, and products

Journal

FUEL
Volume 337, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2022.127061

Keywords

Coffee grounds; Polyethylene; Co-pyrolysis; Py-GC/MS; Dynamic optimization

Ask authors/readers for more resources

Co-pyrolysis of spent coffee grounds and polyethylene can reduce waste streams and pollution, while valorizing energy and by-products. The co-pyrolysis performance is influenced by temperature and blend ratio. The study revealed that co-pyrolysis consists of two stages, the degradation of spent coffee grounds followed by the depolymerization of polyethylene and lignin. The products of co-pyrolysis include a variety of oxygen-containing compounds, and CP73 showed the highest yields of hydrocarbons and alcohols, beneficial for further utilization.
Spent coffee grounds (CG) and polyethylene (PE) are the two typical types of major solid wastes. Their co-pyrolysis may be leveraged to reduce their waste streams and pollution and valorize energy and by-products. In this study, their co-pyrolysis performances, interaction effects, kinetics, and products were characterized in response to the varying temperature and blend ratio. The co-pyrolysis exhibited the two main stages of (1) the degradation of CG (180-380 degrees C) and (2) the depolymerization of PE and the decomposition of lignin (380-550 degrees C). The pyrolysis performance rose from 1.34x10(-4)%(3)center dot min(-2)center dot degrees C-3 with the mono-pyrolysis of CG to 26.32x10(-4)%(3)center dot min(-2)center dot degrees C-3 with the co-pyrolysis of 10 % CG and 90 % PE. The co-pyrolysis of 70 % CG and 30 % PE (CP73) achieved a lower activation energy than did the mono-pyrolysis of the two fuels. The products of the CG pyrolysis included a large number of alcohols, ethers, ketones, esters, and other oxygen-containing compounds, with a proportion as high as 65.01 %. The products of CP73 at 550 degrees C resulted in the yields of hydrocarbons and alcohols up to 93.61 %, beneficial to the further utilization of the co-pyrolytic products. Not only did the co-pyrolysis valorize its products, but also it enhanced their co-circularity. Artificial neural network-based joint optimization showed CP73 in the range of 517-1000 degrees C as the best combination of the conditions. The study provides new insights into the co-pyrolytic disposal of spent coffee grounds and polyethylene so as to improve the waste stream reduction and the valorization of energy and products.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available