4.7 Article

Relation between deformation and relaxation of hydrocolloids-starch based bio-inks and 3D printing accuracy

Journal

FOOD HYDROCOLLOIDS
Volume 137, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.foodhyd.2022.108326

Keywords

Food 3D printing; Cereal food printing; Rheology; 3ITT; Food structure

Ask authors/readers for more resources

For the quality control of starch-based food for 3D food printing, it is important to understand the rheological behavior of the inks during and after printing and their influence on printing accuracy. Mechanical forces during printing strongly affect the pseudoplastic networks of the food inks. By using different hydrocolloids to stabilize the inks, the deformation and relaxation behavior of the materials were investigated, revealing a positive correlation between network strength and printing stability.
For a starch-based food (enriched by proteins and functionalized by hydrocolloids) for 3D food printing and its quality control, knowledge of the rheological behavior of the inks during and after the printing process and its influence on the printing accuracy is urgently needed. Mechanical forces, which occur during the 3D printing process, are strongly influencing the pseudoplastic networks of the food inks. To investigate the influence of the deformation and recovery behavior of these networks and its effect on printing accuracy, five different hydro -colloids (xanthan, methylcellulose, hydroxypropyl methylcellulose, alginate, and starch) were used to stabilize cereal-based food inks. The deformation and relaxation behavior of these materials was investigated using the three-intervall thixotropy test (3ITT), which allows to imitate the mechanical conditions occurring during the 3D printing process. Depending on the stabilization mechanism of each hydrocolloid, the structure recovery varies between 48.03% (HPMC) and 78.56% (starch), based on the storage modulus (G') value after the structure deformation due to extrusion. This is consistent with the results of printing trials (assessed by imaging tech-niques) leading to a positive linear correlation (R2 > 0.89) between the strength of the network and printing stability. The deformation of the inner structure results in a weaker object stability. For future design of edible food prints, a process control of the time between the deposition of layers has to be considered.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available