4.5 Article

Microstructure design strategies to mitigate hydrogen embrittlement in metallic materials

Journal

Publisher

WILEY
DOI: 10.1111/ffe.14074

Keywords

damage tolerance; hydrogen economy; hydrogen embrittlement; metallic materials; microstructure design

Ask authors/readers for more resources

Hydrogen embrittlement is the sudden loss of mechanical property of a material due to the ingress of hydrogen atoms and interactions with the material. The development of microstructure design strategies to mitigate hydrogen embrittlement is challenging due to limited understanding of its fundamental mechanisms. However, recent progress has been made in this field. This article provides an overview of established microstructural approaches to mitigate hydrogen embrittlement in metallic materials, comparing their effectiveness and applicability. The operating mechanisms, advantages, and limitations of these approaches are also discussed to guide future development and successful industrial application.
Hydrogen embrittlement (HE) is characterized by the sudden loss of a material's mechanical property due to the premature failure induced by the ingress of H atoms and various H-materials interactions. This phenomenon threatens almost all the metallic materials that brings an abrupt halt to some of the pending infrastructures needed for a H economy. The development of microstructure design strategies to mitigate HE is challenging, as the fundamental mechanisms for HE process are still not well understood. Nevertheless, some progresses in this field have been made in recent years. Here, we provide an overview on established microstructural approaches to mitigate HE in metallic materials. These methods include second-phase trapping, grain refinement, grain boundary engineering, solute segregation and heterogeneity, and surface treatment. Their effectiveness and materials applicability are compared. The operating mechanisms, advantages, and limitations of these approaches are also discussed to guide their future development and successful industrial application.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available