4.7 Article

Abaloparatide prevents immobilization-induced cortical but not trabecular bone loss after spinal cord injury

Journal

FASEB JOURNAL
Volume 37, Issue 6, Pages -

Publisher

WILEY
DOI: 10.1096/fj.202300109RR

Keywords

Abaloparatide; bone; cortical; disuse; immobilization; spinal cord injury; trabecular; unloading

Ask authors/readers for more resources

Abaloparatide, a modified parathyroid hormone related peptide, protects against spinal cord injury-induced bone loss by promoting bone formation, but does not prevent osteoporosis from occurring.
Spinal cord injury (SCI) causes severe and resistant sublesional disuse bone loss. Abaloparatide, a modified parathyroid hormone related peptide, is an FDA approved drug for treatment of severe osteoporosis with potent anabolic activity. The effects of abaloparatide on SCI-induced bone loss remain undefined. Thus, female mice underwent sham or severe contusion thoracic SCI causing hindlimb paralysis. Mice then received subcutaneous injection of vehicle or 20 mu g/kg/day abaloparatide for 35 days. Micro-computed tomography (micro-CT) analysis of the distal and midshaft femoral regions of the SCI-vehicle mice revealed reduced trabecular fractional bone volume (56%), thickness (75%), and cortical thickness (80%) compared to sham-vehicle controls. Treatment with abaloparatide did not prevent SCI-induced changes in trabecular or cortical bone. However, histomorphometry evaluation of the SCI-abaloparatide mice demonstrated that abaloparatide treatment increased osteoblast (241%) and osteoclast (247%) numbers and the mineral apposition rate (131%) compared to SCI-vehicle animals. In another independent experiment, treatment with 80 mu g/kg/day abaloparatide significantly attenuated SCI-induced loss in cortical bone thickness (93%) when compared to SCI-vehicle mice (79%) but did not prevent SCI-induced trabecular bone loss or elevation in cortical porosity. Biochemical analysis of the bone marrow supernatants of the femurs showed that SCI-abaloparatide animals had 2.3-fold increase in procollagen type I N-terminal propeptide, a bone formation marker than SCI-vehicle animals. SCI groups had 70% higher levels of cross-linked C-telopeptide of type I collagen, a bone resorption marker, than sham-vehicle mice. These findings suggest that abaloparatide protects the cortical bone against the deleterious effects of SCI by promoting bone formation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available