4.6 Article

Towards Next Generation Lithium-Sulfur Batteries: Non-Conventional Carbon Compartments/Sulfur Electrodes and Multi-Scale Analysis

Journal

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
Volume 163, Issue 5, Pages A730-A741

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.0481605jes

Keywords

-

Funding

  1. Office of Vehicle Technologies of the U.S. Department of Energy under the Advanced Battery Materials Research (BMR) Program [DE-EE0006832]
  2. Purdue University
  3. School of Chemical Engineering
  4. Kirk Exploratory Research grant

Ask authors/readers for more resources

In this work, a novel heterofunctional, bimodally-porous carbon morphology, termed the carbon compartment (CC), is utilized as a sulfur host within a lithium-sulfur battery cathode. A multi-scale model explores the physics and chemistry of the lithium-sulfur battery cathode. The CCs are synthesized through a rapid, low cost process to improve electrode-electrolyte interfacial contact and accommodate volumetric expansion associated with sulfide formation. The CCs demonstrate controllable sulfur loading and ca. 700 mAh g(-1) (at 47%-wt S) reversible capacity with high coulombic efficiency due to their unique structures. Density functional theory and ab initio molecular dynamics characterize the interface between the C/S composite and electrolyte during the sulfur reduction mechanism. Stochastic realizations of 3D electrode microstructures are reconstructed based on representative SEM micrographs to study the influence of solid sulfur loading and lithium sulfide precipitation on microstructural and electrochemical properties. A macroscale electrochemical performance model is developed to analyze the performance of lithium-sulfur batteries. The combined multi-scale simulation studies explain key fundamentals of sulfur reduction and its relation to the polysulfide shuttle mechanism: how the process is affected due to the presence of carbon substrate, thermodynamics of lithium sulfide formation and deposition on carbon, and microstructural effects on the overall cell performance. (C) The Author(s) 2016. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse, please email: oa@electrochem.org. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available