4.6 Article

Nanostructural Control and Performance Analysis of Carbon-Free Catalyst Layers Using Nanoparticle-Connected Hollow Capsules for PEFCs

Journal

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
Volume 163, Issue 8, Pages F927-F932

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.0971608jes

Keywords

-

Funding

  1. Kanagawa Academy of Science and Technology (KAST)
  2. Grants-in-Aid for Scientific Research [16K18286] Funding Source: KAKEN

Ask authors/readers for more resources

In this study, the nanostructures of the carbon-free cathode catalyst layers using connected platinum-iron nanoparticle catalysts with porous hollow capsule structures are controlled by the ionomer morphologies (aggregated or not) formed by different treatments (ultrasonication or autoclaving) to the catalyst inks, and the relationship between the catalyst-layer nanostructures and the fuel-cell performances is investigated. Structural and electrochemical analyses of the capsule catalyst layers reveal that the nanosized ionomer morphologies on the capsules strongly influence the oxygen mass-transport resistance; the fully-swollen and thick ionomer layer would cause blocking of the interspaces between the capsules and slow oxygen-diffusion to the capsule surfaces. Thus, the uniform and thin ionomer coating formed by autoclaving produces a higher cell performance due to lower oxygen mass-transport resistance, compared with the nonuniform and partially thick coating formed by ultrasonication. Moreover, the thinner ionomer layer with a very small ionomer/capsule ratio reduces cell performance at high current densities when the humidity at the capsule catalyst layer increases, probably due to the increased oxygen mass-transport resistance through liquid water inside the catalyst layer. Therefore, in addition to the ionomer morphologies, water management in the capsule catalyst layers is important for further improving cell performance. (C) 2016 The Electrochemical Society. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available