4.6 Article Proceedings Paper

Synthesis, Structure, and Electrochemical Properties of a Sulfur-Carbon Replica Composite Electrode for All-Solid-State Li-Sulfur Batteries

Journal

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
Volume 164, Issue 1, Pages A6178-A6183

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.0341701jes

Keywords

-

Funding

  1. Advanced Low Carbon Technology Research and Development Program, Specially Promoted Research for Innovative Next Generation Batteries (ALCA-SPRING) of the Japan Science and Technology Agency (JST)

Ask authors/readers for more resources

Carbon replica constructed of three-dimensional, ordered mesopores was employed as the conductive framework for the composite electrode in Li-sulfur all-solid-state batteries. Using a gas-phase mixing method under various conditions, elemental sulfur was introduced into the mesopores with an average diameter of 12 nm. The all-solid-state cells consisted of the sulfur-carbon replica composite cathode, thio-LISICON solid electrolyte, and Li-Al alloy anode. The cells produced discharge capacities of approximately 1500 mAh g(-1) in the 1st cycle, which is comparable to the theoretical capacity of sulfur. Thermogravimetric and X-ray diffraction analyses revealed that sulfur deposited inside the mesopores is the main contributor to the excellent performance of the battery. However, sulfur strongly interacted with the carbon replica, reducing the thickness of the carbon wall from 7 to 4 nm. This structural change in the carbon matrix triggered the deterioration of battery performance, especially the cycling capability. Optimizing the sulfur deposition conditions could therefore enhance the performance of batteries using such composite electrodes. (C) The Author(s) 2016. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse, please email: oa@electrochem.org. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available