4.5 Review

Lytic polysaccharide monooxygenases: enzymes for controlled and site-specific Fenton-like chemistry

Journal

ESSAYS IN BIOCHEMISTRY
Volume 67, Issue 3, Pages 575-584

Publisher

PORTLAND PRESS LTD
DOI: 10.1042/EBC20220250

Keywords

-

Ask authors/readers for more resources

There are two types of enzymes, LPMOs and monocopper enzymes, which catalyze the oxidative cleavage of substrates through a partially melted mechanism. This has significant implications for our understanding of enzymatic processes in polysaccharide conversion in the biosphere.
The discovery of oxidative cleavage of glycosidic bonds by enzymes currently known as lytic polysaccharide monooxygenases (LPMOs) has profoundly changed our current understanding of enzymatic processes underlying the conversion of polysaccharides in the biosphere. LPMOs are truly unique enzymes, harboring a single copper atom in a solvent-exposed active site, allowing them to oxidize C-H bonds at the C1 and/or C4 carbon of glycosidic linkages found in recalcitrant, often crystalline polysaccharides such as cellulose and chitin. To catalyze this challenging reaction, LPMOs harness and control a powerful oxidative reaction that involves Fenton-like chemistry. In this essay, we first draw a brief portrait of the LPMO field, notably explaining the shift from the monooxygenase paradigm (i.e., using O2 as cosubstrate) to that of a peroxygenase (i.e., using H2O2). Then, we briefly review current understanding of how LPMOs generate and control a hydroxyl radical (HO center dot) generated through Cu(I)-catalyzed H2O2 homolysis, and how this radical is used to create the proposed Cu(II)-oxyl species, abstracting hydrogen atom of the C-H bond. We also point at the complexity of analyzing redox reactions involving reactive oxygen species and address potential deficiencies in the interpretation of existing LPMO data. Being the first copper enzymes shown to enable site-specific Fenton-like chemistry, and maybe not the only ones, LPMOs may serve as a blueprint for future research on monocopper peroxygenases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available