4.8 Article

Exposure to 6-PPD Quinone at Environmentally Relevant Concentrations Causes Abnormal Locomotion Behaviors and Neurodegeneration in Caenorhabditis elegans

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 57, Issue 12, Pages 4940-4950

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.2c08644

Keywords

6-PPDQ; neurotoxicity; locomotion; neurodegeneration; long-term exposure; C; elegans

Ask authors/readers for more resources

The potential neurotoxicity of 6-PPDQ after long-term exposure and the underlying mechanism are unclear. In this study, abnormal locomotion behaviors and neurodegeneration of motor neurons were observed in nematodes exposed to 6-PPDQ. The activation of the DEG-3-mediated signaling cascade and the involvement of genes like jnk-1, dbl-1, daf-7, and glb-10 were also identified.
6-PPD quinone (6-PPDQ) can be transformed from 6-PPD through ozonation. Nevertheless, the potential neurotoxicity of 6-PPDQ after long-term exposure and the underlying mechanism are largely unclear. In Caenorhabditis elegans, we here observed that 0.1-10 mu g/L of 6-PPDQ caused several forms of abnormal locomotion behaviors. Meanwhile, the neurodegeneration of D-type motor neurons was observed in 10 mu g/L of 6-PPDQ-exposed nematodes. The observed neurodegeneration was associated with the activation of the Ca2+ channel DEG-3-mediated signaling cascade. In this signaling cascade, expressions of deg-3, unc-68, itr-1, crt-1, clp-1, and tra-3 were increased by 10 mu g/L of 6-PPDQ. Moreover, among genes encoding neuronal signals required for the control of stress response, expressions of jnk-1 and dbl-1 were decreased by 0.1-10 mu g/L of 6PPDQ, and expressions of daf-7 and glb-10 were decreased by 10 mu g/L of 6-PPDQ. RNAi of jnk-1, dbl-1, daf-7, and glb-10 resulted in the susceptibility to 6-PPDQ toxicity in decreasing locomotory ability and in inducing neurodegeneration, suggesting that JNK-1, DBL-1, DAF-7, and GLB-10 were also required for the induction of 6-PPDQ neurotoxicity. Molecular docking analysis further demonstrated the binding potential of 6-PPDQ to DEG-3, JNK-1, DBL-1, DAF-7, and GLB-10. Together, our data suggested the exposure risk of 6-PPDQ at environmentally relevant concentrations in causing neurotoxicity in organisms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available