4.7 Article

Environmental heat exposure and implications on renal health of pediatric communities in the dry climatic zone of Sri Lanka: An approach with urinary biomarkers.

Journal

ENVIRONMENTAL RESEARCH
Volume 222, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2023.115399

Keywords

Heat stress; Kidney injury; Biomarkers; Pediatric kidney health; Climate change; Thermal comfort

Ask authors/readers for more resources

Prolonged heat exposure during outdoor physical exertion may have negative effects on renal health, but its association with chronic kidney disease in tropical regions is uncertain. This study investigated the likelihood of pediatric renal injury in Sri Lankan school students in dry climatic zones with high prevalence of CKDu, and found no strong evidence for an association between heat exposure and renal injury.
Prolonged heat exposure during outdoor physical exertion can result in adverse renal health outcomes, and it is also supposed to be a driver of chronic kidney disease of uncertain etiology (CKDu) in tropical regions. School students are more likely to experience high heat exposure during outdoor sports practices, and the current knowledge on potential renal health outcomes associated with heat exposure carries many knowledge gaps. Hence, the present study aimed to perform biomarker-based assessment of the likelihood of pediatric renal injury focusing the communities in the dry climatic zone in Sri Lanka, where it prevails relatively harsh climate and high prevalence of CKDu. School students who engaged in regular outdoor sports practices (high-heat exposure), and an age-matched control of students who did not engage in sports practices (low-heat exposure) from four educational zones: Padavi Sripura (N = 159) and Medirigiriya (N = 171), Uhana (N = 165) and Thanamalwila (N = 169) participated in this cross-sectional study representing CKDu endemic and non-endemic regions. Effective temperature (ET), wet-bulb globe temperature (WBGT), heat index (HI) and humidex were used for comparison of thermal comfort in the environment. The intensity of environmental heat measured by thermal comfort indices showed no significant difference (p > 0.05) among the study regions. Urinary kidney injury molecule (KIM-1) and albumin-creatinine ratio (ACR) in participants with high heat exposure did not differ significantly from those in the control groups in the four study zones, where urinary neutrophil gelatinase-associated lipocalin showed substantial differences in some groups. Irrespective of heat exposure, increased KIM-1 excretion was observed (p < 0.01) in participants of CKDu endemic regions compared to those in non -endemic areas. Within the context of our findings, there is no plausibly strong evidence to establish potential association of heat exposure with the likelihood of developing renal injury or abnormal renal outcomes in dry zone school students in Sri Lanka.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available