4.4 Article

Assessing the impact of piercing-sucking pests on greenhouse-grown industrial hemp (Cannabis sativa L.)

Journal

ENVIRONMENTAL ENTOMOLOGY
Volume -, Issue -, Pages -

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/ee/nvad044

Keywords

hemp; piercing-sucking; pests; greenhouse

Categories

Ask authors/readers for more resources

Cannabis sativa or hemp is a specialty crop in the United States that is of interest to replace tobacco production. The most significant pests in greenhouse grown hemp are twospotted spider mite, hemp russet mite, broad mites, and cannabis aphids. This study aimed to understand the effects of feeding by spider mites and green peach aphids on the concentration of economically significant cannabinoids in greenhouse grown plants.
Cannabis sativa or hemp, defined as <0.3% total tetrahydrocannabinol (THC), is a specialty crop in the United States, of particular interest among growers in the southeastern United States to replace tobacco production. Tetranychus urticae (twospotted spider mite), Aculops cannabicola (hemp russet mite), Polyphagotarsonemus latus (broad mites), and Phorodon cannabis (cannabis aphids) are considered the most significant pests in greenhouse grown hemp. Mite and aphid injury can cause cupping and yellowing of leaves, resulting in leaf drop, and reduced flower and resin production. We sought to understand the effects of feeding by T. urticae and Myzus persicae (green peach aphid), as a proxy for P. cannabis, on the concentration of economically significant cannabinoids through a series of experiments on greenhouse grown plants. First, we compared the variability of chemical concentrations in samples collected from individual plants versus pooled samples from 5 plants, and found that chemical concentrations in single plants were similar to those in pooled plant samples. Next, we compared chemical concentrations prior to arthropod infestation and post infestation. When evaluating the mite feeding damage in 2020, cannabinoids in plants infested with high densities of T. urticae increased more slowly than in uninfested control plants or plants infested with low T. urticae densities. In 2021, the concentration of tetrahydrocannabinol did not differ significantly between treatments. Cannabidiol increased more slowly in plants with low T. urticae densities when compared to uninfested controls but did not differ from the high T. urticae densities 14 days after infestation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available