4.6 Article

Tunable Non-Markovianity for Bosonic Quantum Memristors

Journal

ENTROPY
Volume 25, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/e25050756

Keywords

open quantum system; non-Markovanity; quantum memristor

Ask authors/readers for more resources

We investigated the tunable control of non-Markovianity in a bosonic mode by coupling it to auxiliary qubits in a thermal reservoir. By considering the Tavis-Cummings model for a single cavity mode and auxiliary qubits, we studied the manipulation of dynamical non-Markovianity with respect to the qubit frequency. Our findings reveal that controlling the auxiliary systems can influence the cavity dynamics as a time-dependent decay rate. Finally, we demonstrate how this tunable time-dependent decay rate can be used to engineer bosonic quantum memristors, which are essential for developing neuromorphic quantum technologies.
We studied the tunable control of the non-Markovianity of a bosonic mode due to its coupling to a set of auxiliary qubits, both embedded in a thermal reservoir. Specifically, we considered a single cavity mode coupled to auxiliary qubits described by the Tavis-Cummings model. As a figure of merit, we define the dynamical non-Markovianity as the tendency of a system to return to its initial state, instead of evolving monotonically to its steady state. We studied how this dynamical non-Markovianity can be manipulated in terms of the qubit frequency. We found that the control of the auxiliary systems affects the cavity dynamics as an effective time-dependent decay rate. Finally, we show how this tunable time-dependent decay rate can be tuned to engineer bosonic quantum memristors, involving memory effects that are fundamental for developing neuromorphic quantum technologies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available