4.5 Article

MHD Mixed Convection of Non-Newtonian Bingham Nanofluid in a Wavy Enclosure with Temperature-Dependent Thermophysical Properties: A Sensitivity Analysis by Response Surface Methodology

Journal

ENERGIES
Volume 16, Issue 11, Pages -

Publisher

MDPI
DOI: 10.3390/en16114408

Keywords

Bingham nanofluid; analysis of variance (ANOVA); response surface methodology (RSM); sensitivity test; wavy cavity; finite volume method (FVM); mixed convection; entropy generation

Categories

Ask authors/readers for more resources

In this study, the numerical investigation of magneto-hydrodynamic mixed convection flow and entropy formation of non-Newtonian Bingham fluid in a lid-driven wavy square cavity filled with nanofluid was conducted using the finite volume method (FVM). The results indicate that within the given parameter range, Reynolds number and nanoparticle volume fraction have a positive impact on the average Nusselt number (Nu over bar ), while Hartmann number and Bingham number have a negative impact on it. The entropy generation is also affected by these parameters.
The numerical investigation of magneto-hydrodynamic (MHD) mixed convection flow and entropy formation of non-Newtonian Bingham fluid in a lid-driven wavy square cavity filled with nanofluid was investigated by the finite volume method (FVM). The numerical data-based temperature and nanoparticle size-dependent correlations for the Al2O3-water nanofluids are used here. The physical model is a two-dimensional wavy square cavity with thermally adiabatic horizontal boundaries, while the right and left vertical walls maintain a temperature of T-C and T-H, respectively. The top wall has a steady speed of u=u0. Pertinent non-dimensional parameters such as Reynolds number (Re=10,100,200,400), Hartmann number (Ha=0,10,20), Bingham number (Bn=0,2,5,10,50,100,200), nanoparticle volume fraction (f=0,0.02,0.04), and Prandtl number (Pr=6.2) have been simulated numerically. The Richardson number Ri is calculated by combining the values of Re with a fixed value of Gr, which is the governing factor for the mixed convective flow. Using the Response Surface Methodology (RSM) method, the correlation equations are obtained using the input parameters for the average Nusselt number (Nu over bar ), total entropy generation (E-s)t, and Bejan number (Be-avg). The interactive effects of the pertinent parameters on the heat transfer rate are presented by plotting the response surfaces and the contours obtained from the RSM. The sensitivity of the output response to the input parameters is also tested. According to the findings, the mean Nusselt numbers (Nu over bar ) drop when Ha and Bn are increased and grow when Re and f are augmented. It is found that (E-s)t is reduced by raising Ha, but (Es)t rises with the augmentation of f and Re. It is also found that the f and Re numbers have a positive sensitivity to the Nu over bar , while the sensitivity of the Ha and Bn numbers is negative.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available