4.5 Article

Impact of Waste Fry Biofuel on Diesel Engine Performance and Emissions

Journal

ENERGIES
Volume 16, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/en16093711

Keywords

waste cooking fry oil; biodiesel; CI engine; emission; performance

Categories

Ask authors/readers for more resources

Energy primarily comes from fossil fuels, which leads to increased emissions and greenhouse gases. In order to find a replacement for depleting fossil fuel energy, a range of oxygenated fuels were investigated. This study assessed the feasibility and characteristics of converting used fry oil into biodiesel fuel, and compared the performance of a diesel engine operating on biodiesel and diesel fuel.
Energy is primarily obtained from fossil fuels and with the use of fossil fuels, we are increasing the emissions and greenhouse gases. It takes constant effort to meet the energy need from environmentally acceptable and renewable fuels. In order to find a replacement for depleting fossil fuel energy, a range of oxygenated fuels was investigated based on their accessibility and geographic areas. This work assessed the transesterification process's feasibility of turning used fry oil into biodiesel fuel and its physiochemical characteristics. The performances of a diesel engine operating on biodiesel and diesel fuel were assessed and compared. Four different types of fry oils were utilized for the research on a diesel agricultural engine with indirect injection. The first fry, second fry, third fry, and restaurant fry were the various sorts of fry oil. Five different types of biodiesels and their blends were investigated for their engine efficiency and emission metrics. B40 (biodiesel 40% and diesel 60%) and B80 (biodiesel 80% and diesel 20%) biodiesel blends were tested in different engine speed conditions under 50% and 100% engine loads. While the brake thermal efficiency (BTE) decreased as the engine rpm increased, it was found that the brake-specific fuel consumption (BSFC) increased. Due to the poor air-fuel ratio at higher engine speeds, the BTE decreased. NOx (nitrogen oxides) emissions were higher for all the biodiesel blends because of the higher oxygen content in the biodiesel blends. The smoke opacity in both blends decreased with rising rpm under both load situations and was lower than in pure diesel. Because of the larger cetane number and lower heating value, the exhaust gas temperature (EGT) dropped. It was determined that prolonging the fry time altered the engine performance and emission metrics. The use of sustainable fuel is essential; waste fry cooking oil as a substitute for fossil diesel could be a prospective replacement in the agricultural engine and transportation sector.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available