4.7 Article

miR-186 induces tetraploidy in arsenic exposed human keratinocytes

Journal

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
Volume 256, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2023.114823

Keywords

Arsenic; Micro -RNA; Chromosomal instability; Tetraploidy; Aneuploidy; Carcinogenesis

Ask authors/readers for more resources

Chronic inorganic arsenic (iAs) exposure in drinking water is a global issue affecting over 225 million people, with skin being the major target organ for iAs. Dysregulation of miRNA and chromosomal instability (CIN) are proposed mechanisms of iAs-induced carcinogenesis. This study suggests that overexpression of miR-186 contributes to iAs-induced transformation of keratinocytes by targeting mitotic regulators and inducing CIN.
Chronic inorganic arsenic (iAs) exposure in drinking water is a global issue affecting >225 million people. Skin is a major target organ for iAs. miRNA dysregulation and chromosomal instability (CIN) are proposed mechanisms of iAs-induced carcinogenesis. CIN is a cancer hallmark and tetraploid cells can better tolerate increase in chromosome number and aberration, contributing to the evolution of CIN. miR-186 is overexpressed in iAsinduced squamous cell carcinoma relative to iAs-induced hyperkeratosis. Bioinformatic analysis indicated that miR-186 targets mRNAs of important cell cycle regulators including mitotic checkpoint serine/threonine kinase B (BUB1) and cell division cycle 27 (CDC27). We hypothesized that miR-186 overexpression contributes to iAsinduced transformation of keratinocytes by targeting mitotic regulators leading to induction of CIN. Ker-CT cells, a near diploid human keratinocyte cell line, were transduced with miR-186 overexpressing or scrambled control lentivirus. Stable clones were isolated after puromycin selection. Clones transduced with lentivirus expressing either a scrambled control miRNA or miR-186 were maintained with 0 or 100 nM iAs for 4 weeks. Unexposed scrambled control clones were considered as passage matched controls. Chronic iAs exposure increased miR-186 expression in miR-186 clones. miR-186 overexpression significantly reduced CDC27 levels irrespective of iAs exposure. The percentage of tetraploid or aneuploid cells was increased in iAs exposed miR-186 clones. Aneuploidy can arise from a tetraploid intermediate. Suppression of CDC27 by miR-186 may lead to impairment of mitotic checkpoint complex formation and its ability to maintain cell cycle arrest leading to chromosome misalignment. As a result, cells overexpressing miR-186 and chronically exposed to iAs may have incorrect chromosome segregation and CIN. These data suggest that dysregulation of miRNA by iAs mediates tetraploidy, aneuploidy and chromosomal instability contributing to iAs-induced carcinogenesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available