4.7 Article

Discovery of selective HDAC6 inhibitors based on a multi-layer virtual screening strategy

Journal

COMPUTERS IN BIOLOGY AND MEDICINE
Volume 160, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compbiomed.2023.107036

Keywords

HDAC6 inhibitor; Virtual screening; Molecular dynamic simulation; Biological evaluation

Ask authors/readers for more resources

A multi-layer virtual screening workflow was established to screen compounds with inhibitory activity against HDAC6 and anti-tumor cell proliferation. The screened compounds showed nanomolar inhibitory activity and anti-proliferative activities against tumor cells, providing novel scaffolds for subsequent anti-tumor drug design based on HDAC6 target.
The abnormal enhancement of histone deacetylase 6 (HDAC6) has been demonstrated to be closely related to the occurrence and development of various malignant tumors, attracting extensive attention as a promising target for cancer therapy. Currently, only limited selective HDAC6 inhibitors have entered clinical trials, making the rapid discovery of selective HDAC6 inhibitors with safety profiles particularly urgent. In this study, a multi-layer virtual screening workflow was established, and the representative compounds screened were biologically evaluated in combination with enzyme inhibitory and anti-tumor cell proliferation experiments. The experi-mental results showed that the screened compounds L-25, L-32, L-45 and L-81 exhibited nanomolar inhibitory activity against HDAC6, and exerted a certain degree of anti-proliferative activities against tumor cells, especially the cytotoxicity of L-45 to A375 (IC50 = 11.23 +/- 1.27 mu M) and the cytotoxicity of L-81 against HCT-116 (IC50 = 12.25 +/- 1.13 mu M). Additionally, the molecular mechanisms underlying the subtype selective inhibitory activities of the selected compounds were further elucidated using computational approaches, and the hotspot residues on HDAC6 contributing to the ligands' binding were identified. In summary, this study established a multi-layer screening scheme to quickly and effectively screen out hit compounds with enzyme inhibitory activity and anti-tumor cell proliferation, providing novel scaffolds for the subsequent anti-tumor drug design based on HDAC6 target.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available