4.7 Article

Boosted federated learning based on improved Particle Swarm Optimization for healthcare IoT devices

Journal

COMPUTERS IN BIOLOGY AND MEDICINE
Volume 163, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compbiomed.2023.107195

Keywords

Federated learning; Machine learning; COVID-19; Cardiovascular; Particle Swarm Optimization

Ask authors/readers for more resources

With the increasing availability of healthcare data, machine learning is becoming more significant in healthcare domains. It is crucial to ensure the integrity and reliability of machine learning models to maintain the quality of healthcare services. Due to privacy and security concerns, healthcare data is often treated as independent sources and limited computational capabilities of wearable healthcare devices hinder traditional machine learning. Federated Learning, which protects data privacy by storing only learned models on a server and advances with data from scattered clients, shows potential to transform healthcare by enabling the development of new machine learning applications.
As healthcare data becomes increasingly available from various sources, including clinical institutions, patients, insurance companies, and pharmaceutical industries, machine learning (ML) services are becoming more significant in healthcare-facing domains. Therefore, it is imperative to ensure the integrity and reliability of ML models to maintain the quality of healthcare services. Particularly due to the growing need for privacy and security, healthcare data has resulted in each Internet of Things (IoT) device being treated as an independent source of data, isolated from other devices. Moreover, the limited computational and communication capabilities of wearable healthcare devices hinder the applicability of traditional ML. Federated Learning (FL) is a paradigm that maintains data privacy by storing only learned models on a server and advances with data from scattered clients, making it ideal for healthcare applications where patient data must be safeguarded. The potential of FL to transform healthcare is significant, as it can enable the development of new ML-powered applications that can enhance the quality of care, lower costs, and improve patient outcomes. However, the accuracy of current Federated Learning aggregation methods suffers greatly in unstable network situations due to the high volume of weights transmitted and received. To address this issue, we propose an alternative approach to Federated Average (FedAvg) that updates the global model by gathering score values from learned models primarily utilized in Federated Learning, using an improved version of Particle Swarm Optimization (PSO) called FedImpPSO. This approach boosts the robustness of the algorithm in erratic network conditions. To further enhance the speed and efficiency of data exchange within a network, we modify the format of the data clients send to servers using the FedImpPSO method. The proposed approach is evaluated using the CIFAR-10 and CIFAR-100 datasets and a Convolutional Neural Network (CNN). We found that it yielded an average accuracy improvement of 8.14% over FedAvg and 2.5% over Federated PSO (FedPSO). This study evaluates the use of FedImpPSO in healthcare by training a deep-learning model over two case studies to evaluate the effectiveness of our approach in healthcare. The first case study involves the classification of COVID-19 using public datasets (Ultrasound and X-ray) and achieved an F1-measure of 77.90% and 92.16%, respectively. The second case study was conducted over the cardiovascular dataset, where our proposed FedImpPSO achieves 91.18% and 92% accuracy in predicting the existence of heart diseases. As a result, our approach demonstrates the effectiveness of using FedImpPSO to improve the accuracy and robustness of Federated Learning in unstable network conditions and has potential applications in healthcare and other domains where data privacy is critical.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available