4.5 Article

A fast approach to estimating Windkessel model parameters for patient-specific multi-scale CFD simulations of aortic flow

Journal

COMPUTERS & FLUIDS
Volume 259, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compfluid.2023.105894

Keywords

Windkessel model; Flow resistance; Aortic flow; Computational Fluid Dynamics; Lattice Boltzmann Method

Ask authors/readers for more resources

Computational fluid dynamics (CFD) study of hemodynamics in the aorta can provide a comprehensive analysis of relevant cardiovascular diseases. One trending approach is to couple the three-element Windkessel model with patient-specific CFD simulations to form a multi-scale model that captures more realistic flow fields. However, case-specific parameters (e.g., Rc, Rp, and C) for the Windkessel model must be tuned to reflect patient-specific flow conditions.
Computational fluid dynamics (CFD) study of hemodynamics in the aorta can provide a comprehensive analysis of relevant cardiovascular diseases. One trending approach is to couple the three-element Windkessel model with patient-specific CFD simulations to form a multi-scale model that captures more realistic flow fields. However, case-specific parameters (e.g., Rc, Rp, and C) for the Windkessel model must be tuned to reflect patient-specific flow conditions. In this study, we propose a fast approach to estimate these parameters under both physiological and pathological conditions. The approach consists of the following steps: (1) finding geometric resistances for each branch using steady CFD simulation; (2) using the pattern search algorithm from Matlab toolbox to search the parameter spaces by solving the flow circuit system with the consideration of geometric resistances; (3) performing the multi-scale modeling of aortic flow with the optimized Windkessel model parameters. The method was validated through a series of numerical experiments to show flexibility and robustness, including physiological and pathological flow distributions at each downstream branch from healthy or stenosed aortic geometries. This study demonstrates a flexible and computationally efficient way to capture patient-specific hemodynamics in the aorta, facilitating personalized biomechanical analysis of aortic flow.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available