4.6 Article

Bjorken Flow Revisited: Analytic and Numerical Solutions in Flat Space-Time Coordinates

Journal

COMMUNICATIONS IN COMPUTATIONAL PHYSICS
Volume 33, Issue 1, Pages 174-188

Publisher

GLOBAL SCIENCE PRESS
DOI: 10.4208/cicp.OA-2022-0051

Keywords

Relativistic hydrodynamics; heavy-ion collisions; Bjorken flow; lattice kinetic solvers

Ask authors/readers for more resources

In this work, we provide both analytic and numerical solutions for the Bjorken flow, which is a standard benchmark in relativistic hydrodynamics. It offers a simple model for the macroscopic evolution of matter produced in heavy nucleus collisions. We consider relativistic gases with both massive and massless particles, working in a (2+1) and (3+1) Minkowski spacetime coordinate system. The numerical results obtained from a newly developed lattice kinetic scheme show excellent agreement with the analytic solutions.
In this work we provide analytic and numerical solutions for the Bjorken flow, a standard benchmark in relativistic hydrodynamics providing a simple model for the bulk evolution of matter created in collisions between heavy nuclei. We consider relativistic gases of both massive and massless particles, working in a (2+1) and (3+1) Minkowski space-time coordinate system. The numerical results from a recently developed lattice kinetic scheme show excellent agreement with the analytic solutions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available