4.6 Article

Lycopene alleviates oxidative stress-induced cell injury in human vascular endothelial cells by encouraging the SIRT1/Nrf2/HO-1 pathway

Journal

CLINICAL AND EXPERIMENTAL HYPERTENSION
Volume 45, Issue 1, Pages -

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/10641963.2023.2205051

Keywords

Cardiovascular disease; lycopene; oxidative stress; the SIRT1; Nrf2; HO-1 pathway; apoptosis

Ask authors/readers for more resources

The aim of this study was to investigate whether the intervention with different concentrations of lycopene could attenuate H2O2-induced oxidative stress injury in human vascular endothelial cells (VECs). The results showed that lycopene can alleviate oxidative damage in VECs by reducing intracellular ROS levels, inflammatory factor production, cell adhesiveness, and apoptosis rate under oxidative stress conditions through activation of the SIRT1/Nrf2/HO-1 pathway.
Background and objective: Epidemiological research have displayed that dietary intake rich in lycopene, an antioxidant, is negatively correlated with the risk of cardiovascular disease (CVD). This study aimed to investigate whether the intervention with different concentrations of lycopene could attenuate H2O2-induced oxidative stress injury in human vascular endothelial cells (VECs). Methods: The human VECs HMEC-1 and ECV-304 were incubated with a final concentration of 300 mu mol/L H2O2, followed by they were incubated with lycopene at doses of 0.5, 1, or 2 mu m. Subsequently, cell proliferation, cytotoxicity, cell adhesion, reactive oxygen species (ROS) contents, adhesion molecule expression, oxidative stress levels, pro-inflammatory factor production, the apoptosis protein levels, and the silent information regulator-1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway protein levels were tested by CCK-8 kit, lactate dehydrogenase (LDH) kit, immunofluorescence labeling, cell surface enzyme immunoassays (EIA), enzyme-linked immunosorbent assay (ELISA), as well as Western blot assays, respectively. Results: Under H2O2 stimulation, HMEC-1 and ECV-304 cell proliferation and the SIRT1/Nrf2/HO-1 pathway protein expression were significantly reduced, whereas cytotoxicity, apoptosis, cell adhesion molecule expression, pro-inflammatory and oxidative stress factors production were apparently encouraged, which were partially countered by lycopene intervention in a dose-dependent manner. Conclusion: Lycopene alleviates H2O2-induced oxidative damage in human VECs by reducing intracellular ROS levels, inflammatory factor production, cell adhesiveness, and apoptosis rate under oxidative stress conditions through activation of the SIRT1/Nrf2/HO-1 pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available