4.6 Article

Ghrelin improves endothelial function and reduces blood pressure in Ang II-induced hypertensive mice: Role of AMPK

Journal

CLINICAL AND EXPERIMENTAL HYPERTENSION
Volume 45, Issue 1, Pages -

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/10641963.2023.2208774

Keywords

Ghrelin; endothelial function; hypertension; AMPK; oxidative stress

Ask authors/readers for more resources

In this study, it was found that ghrelin can improve endothelial function and lower blood pressure in Ang II-induced hypertensive mice. This protective effect is likely achieved through the reduction of oxidative stress, the increase in NO production, and the activation of the AMPK signaling pathway.
Background Endothelial dysfunction is a major pathophysiology observed in hypertension. Ghrelin, a key regulator of metabolism, has been shown to play protective roles in cardiovascular system. However, whether it has the effect of improving endothelial function and lowering blood pressure in Ang II-induced hypertensive mice remains unclear. Methods In this study, hypertension was induced by continuous infusion of Ang II with a subcutaneous osmotic pumps and ghrelin (30 mu g/kg/day) was intraperitoneal injection for 4 weeks. Acetylcholine-induced endothelium-dependent relaxation in aortae was measured on wire myograph and superoxide production in mouse aortae was assessed by fluorescence imaging. Results We found that ghrelin had protective effects on Ang II-induced hypertension by inhibiting oxidative stress, increasing NO production, improving endothelial function, and lowering blood pressure. Furthermore, ghrelin activated AMPK signaling in Ang II-induced hypertension, leading to inhibition of oxidative stress. Compound C, a specific inhibitor of AMPK, reversed the protective effects of ghrelin on the reduction of oxidative stress, the improvement of endothelial function and the reduction of blood pressure. Conclusions our findings indicated that ghrelin protected against Ang II-induced hypertension by improving endothelial function and lowering blood pressure partly through activating AMPK signaling. Thus, ghrelin may be a valuable therapeutic strategy for hypertension.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available