4.5 Article

Model-based analysis of temperature-dependent dynamics in CFRP spindle unit

Journal

CIRP ANNALS-MANUFACTURING TECHNOLOGY
Volume 72, Issue 1, Pages 337-340

Publisher

ELSEVIER
DOI: 10.1016/j.cirp.2023.04.065

Keywords

Machine tool; Spindle; Dynamics

Ask authors/readers for more resources

This research proposes a modeling method of CFRP spindle unit dynamics via generalized multipoint receptance coupling with contact characteristics at the spindle-holder interface. The temperature-dependent mechanical properties are analyzed by parameter identification from the model. The translational stiffness and damping of bearings in the CFRP spindle increase with temperature increase at high rotational speed.
The application of CFRP to machine tool structures can potentially improve their dynamic characteristics and energy efficiency owing to its highly specific material properties. The different thermal characteristics of CFRP and steel in spindle units likely induce unique thermal deformation, which affects the bearing dynamics. This research proposes a modeling method of CFRP spindle unit dynamics via generalized multipoint receptance coupling with contact characteristics at the spindle-holder interface. The temperature-dependent mechanical properties are analyzed by parameter identification from the model. The translational stiffness and damping of bearings in the CFRP spindle increase with temperature increase at high rotational speed. & COPY; 2023 CIRP. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available