4.3 Article

Simulation workflows to predict the circular dichroism and circularly polarized luminescence of chiral materials

Journal

CHIRALITY
Volume 35, Issue 10, Pages 673-680

Publisher

WILEY
DOI: 10.1002/chir.23546

Keywords

ab initio dynamics; CD; chiral materials; CPL; DFT; enhanced sampling; simulations; TD-DFT

Ask authors/readers for more resources

Chiral materials have unique properties and optical activity, making them highly interesting in various fields. This tutorial demonstrates how theoretical simulations can be used to predict and interpret chiroptical data, as well as identify chiral geometries, to enhance the development of chiral materials.
Chiral materials are attracting considerable interest in various fields in view of their unique properties and optical activity. Indeed, the peculiar features of chiral materials to absorb and emit circularly polarized light enable their use in an extensive range of applications. Motivated by the interest in boosting the development of chiral materials characterized by enhanced chiroptical properties such as circular dichroism (CD) and circular polarized luminescence (CPL), we herein illustrate in this tutorial how theoretical simulations can be used for the predictions and interpretations of chiroptical data and for the identification of chiral geometries. We are focusing on computational frameworks that can be used to investigate the theoretical aspects of chiral materials' photophysical and conformational characteristics. We will then illustrate ab initio methods based on density functional theory (DFT) and its time-dependent extension (TD-DFT) to simulate CD and CPL signals, and we will exemplify a variety of enhanced sampling techniques useful for an adequate sampling of the configurational space for chiral systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available