4.6 Article

Multi-objective optimization of different dome reinforcement methods for composite cases

Journal

CHINESE JOURNAL OF AERONAUTICS
Volume 36, Issue 4, Pages 299-314

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.cja.2023.02.004

Keywords

Carbon fibers; Damage mechanics; Failure; Filament winding; Mechanical properties

Ask authors/readers for more resources

This paper proposes a multi-objective optimization method for different dome reinforcement methods of a filament-wound solid rocket motor composite case. The Radial Basis Function (RBF) model is used to improve the optimization efficiency. Progressive damage of the composite case is considered, and the simulation results are validated by hydraulic burst tests. The optimal reinforcement method is found to be variable-angle dome reinforcement, which can ensure continuous changing of the reinforcement angle and decrease the mass of composite materials.
A multi-objective optimization method was proposed for different dome reinforcement methods of a filament-wound solid rocket motor composite case based on a Radial Basis Function (RBF) model. Progressive damage of the composite case was considered in a simulation based on Hashin failure criteria, and simulation results were validated by hydraulic burst tests to precisely predict the failure mode, failure position, and burst pressure. An RBF surrogate model was established and evaluated by Relative Average Absolute Error (RAAE), Relative Maximum Absolute Error (RMAE), Root Mean Squared Error (RMSE), and R2 methods to improve the optimization efficient of dome reinforcement. In addition, the Non-dominated Sorting Genetic Algorithm (NSGA-II) was employed to establish multi-objective optimization models of variable-angle and variable-polar-radius dome reinforcements to investigate the coupling effect of the reinforcement angle, reinforcement layers, and reinforcement range on the case performance. Optimal reinforcement parameters were obtained and used to establish a progressive damage model of the composite case with dome reinforcement. In accordance with progressive damage analysis, the burst pressure and performance factor were obtained. Results illustrated that variable-angle dome reinforcement was the optimal reinforcement method compared with variable-polar-radius dome reinforcement as it could not only ensure the reinforcement angle's continuous changing but also decrease the mass of composite materials. Compared with the unreinforced case, the reinforced case exhibited an

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available