4.7 Article

Interfacial self-transportation via controlled wettability transition for directed self-assembly

Journal

CHINESE CHEMICAL LETTERS
Volume 34, Issue 12, Pages -

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.cclet.2023.108538

Keywords

Wettability transition; Tracks; Capillary force; Self-transportation; Directed self-assembly

Ask authors/readers for more resources

Wettability transition is a significant responsive mechanism applied to construct smart materials and systems. In this article, a track-guided self-transportation system mediated by sequential wettability transition accompanied with capillary transportation is developed. The system is used for directed self-assembly of multiple PDMS building blocks.
Wettability transition is a significant responsive mechanism which is widely applied to construct smart materials and systems. The broad-spectrum responsiveness of the wettability transition makes it a promising way to expand innovative applications. Here, we develop a track-guided self-transportation system mediated by sequential wettability transition accompanied with capillary transportation. Alkaline fuel is loaded into polydimethylsiloxane (PDMS) cuboid to trigger the wettability transition of distributed superhydrophobic tracks laid in shallow water. After the wettability transition, the induced capillary force can propel the repetitive track-to-track transportation of PDMS. Importantly, the spacing between adjacent tracks is rationally designed based on multiple factors including threshold of wettability transition, diffusion kinetics and capillary interaction. Furthermore, the track-guided transportation system is applied to realize directed self-assembly of multiple PDMS building blocks for designated configuration, which increases the complexity and intelligence of self-assembly systems.& COPY; 2023 Published by Elsevier B.V. on behalf of Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available