4.7 Article

Passive daytime radiative cooling coatings with renewable self-cleaning functions

Journal

CHINESE CHEMICAL LETTERS
Volume 35, Issue 2, Pages -

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.cclet.2023.108687

Keywords

Superhydrophobic; Passive radiative cooling; Wearing; Regeneration; Glass resin armor

Ask authors/readers for more resources

Passive daytime radiative cooling (PDRC) technology, while promising for global spacing cooling, faces limitations in practical application due to reduced cooling effectiveness caused by wear and dirt contamination. Researchers have developed a renewable armor structure using fluorinated hollow glass microspheres to enhance the anti-fouling and cooling properties of PDRC coatings. The coatings exhibit high solar reflectance and thermal emittance, leading to significant temperature reduction below ambient temperature.
Passive daytime radiative cooling (PDRC) technology is emerging as one of the most promising solutions to the global problem of spacing cooling, but its practical application is limited due to reduced cooling effectiveness caused by daily wear and tear, as well as dirt contamination. To tackle this problem, we report a novel strategy by introducing a renewable armor structure for prolonging the anti-fouling and cooling effectiveness properties of the PDRC coatings. The armor structure is designed by decorating fluorinated hollow glass microspheres (HGM) inside rigid resin composite matrices. The HGM serve triple purposes, including providing isolated cavities for enhanced solar reflectance, reinforcing the matrices to form robust armored structures, and increasing thermal emittance. When the coatings are worn, the HGM on the surface expose their concave cavities with numerous hydrophobic fragments, generating a highly rough surface that guarantee the superhydrophobic function. The coatings show a high sunlight reflectance (0.93) and thermal emittance (0.94) in the long-wave infrared window, leading to a cooling of 5 degrees C below ambient temperature under high solar flux ( similar to 900 W/m2). When anti-fouling functions are reduced, they can be regenerated more than 100 cycles without compromising the PDRC function by simple wearing treatment. Furthermore, these coatings can be easily prepared using a one-pot spray method with low-cost materials, exhibit strong adhesion to a variety of substrates, and demonstrate exceptional environmental stability. Therefore, we anticipate their immediate application opportunities for spacing cooling. (c) 2023 Published by Elsevier B.V. on behalf of Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available