4.7 Article

Environmental benign foam finishing with a hyperbranched polyphosphonate flame retardant for polyethylene terephthalate fabric

Journal

CHEMOSPHERE
Volume 317, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2023.137892

Keywords

Poly (ethylene terephthalate); Foam finishing; Flame retardancy; Fabric

Ask authors/readers for more resources

In this study, a highly-effective hyperbranched flame retardant (DT) was synthesized by ester exchange and coated on PET fabric to improve its fire performance. The treated PET fabric showed good flame retardancy and physical properties. Moreover, the processing of the flame retardant was eco-friendly. This work provides a facile and eco-friendly strategy for fabricating flame retardant PET fabric with excellent comprehensive performances.
It is still a big challenge for textile industry in improving fire resistance and reducing melt dripping with minimal loss on the physical properties of polyethylene terephthalate (PET) fabrics. In this work, a highly-effective hyperbranched flame retardant (DT) was first synthesized by ester exchange without using any organic sol-vent. Then, the DT foam was prepared and blade coated on PET fabric to improve the fire performance. The prepared PET fabric with only 2.7% weight gain of DT was self-extinguished and did not produce any molten dripping during the vertical flammable test. The peak heat release rate and total heat release of the PET fabric sample with 19.4% DT were decreased by 42.0% and 57.1%, respectively compared with that of the control PET. Besides, the as-prepared PET fabric sample showed better physical properties such as breaking strength, vapor permeability, air permeability, antistatic property, and softness than the control PET fabric sample. The DT foam finishing process did not involve any organic solvent and consumed less water and energy compared with conventional fabric treatments. It is expected that this work provides a facile and eco-friendly strategy for fabricating flame retardant PET fabric with excellent comprehensive performances.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available