4.6 Article

Electron-Precise Dicationic Tetraboranes: Syntheses, Structures and Rearrangement to an Alkylidene Borate-Borenium Zwitterion and a 1,3-Azaborinine

Journal

CHEMISTRY-A EUROPEAN JOURNAL
Volume -, Issue -, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.202300644

Keywords

borate borenium; diborene; dicationic tetraborane; oligoborane; zwitterionic

Ask authors/readers for more resources

Stable symmetrical and unsymmetrical dicationic tetraboranes with an electron-precise tetraborane chain were synthesized and characterized. The reactions of these tetraboranes with reductants/bases led to different outcomes depending on the conditions used, including reduction and rearrangement of the tetraborane chain, cleavage of the tetraborane chain, and reduction of the supporting ligands. The zwitterionic alkylidene borate-borenium species formed can be considered as analogues of base-stabilized diborenes, and they exhibit a highly polarized B-B bond.
Carbene-stabilized symmetrical and unsymmetrical dicationic tetraboranes, featuring an electron-precise tetraborane chain, were synthesized and fully characterized. Reactions of these tetraboranes with reductants/bases give rise to different outcomes according to the conditions employed, including: 1) reduction and rearrangement of the tetraborane chain to give a zwitterionic alkylidene borate-borenium species; 2) cleavage of the tetraborane chain to afford a 1,3-azaborinine; and 3) reduction of the supporting ligands to provide a diamino dipotassium salt. The zwitterionic alkylidene borate-borenium species can be viewed as an analogue of the base-stabilized diborenes. NMR spectroscopy and DFT calculations reveal a highly polarized B-B bond in the zwitterionic alkylidene borate-borenium, in which the formal oxidation states of the boron atoms can be considered as -1 and +2. These results suggest the considerable potential of tetraboranes as synthons for low-valent boron species.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available