4.8 Article

Large-Scale Formation of DNA Origami Lattices on Silicon

Journal

CHEMISTRY OF MATERIALS
Volume 35, Issue 5, Pages 1961-1971

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.2c03190

Keywords

-

Ask authors/readers for more resources

In recent years, DNA has been used as a promising material for fabricating hierarchical nanostructures due to its self-assembly properties and functionalization schemes. This study demonstrates the assembly of a two-dimensional fishnet-type lattice on a silicon substrate using cross-shaped DNA origami. The effects of environmental and structural factors on lattice assembly are investigated, and a methodology for producing closely-spaced DNA origami lattices on silicon substrate is developed.
In recent years, hierarchical nanostructures have found applications in fields like diagnostics, medicine, nano-optics, and nano -electronics, especially in challenging applications like the creation of metasurfaces with unique optical properties. One of the promising materials to fabricate such nanostructures has been DNA due to its robust self-assembly properties and plethora of different functionalization schemes. Here, we demonstrate the assembly of a two-dimensional fishnet-type lattice on a silicon substrate using cross-shaped DNA origami as the building block, i.e., tile. The effects of different environmental and structural factors are investigated under liquid atomic force microscopy (AFM) to optimize the lattice assembly. Furthermore, the arm-to-arm binding affinity of the tiles is analyzed, revealing preferential orientations. From the liquid AFM results, we develop a methodology to produce closely-spaced DNA origami lattices on silicon substrate, which allows further nanofabrication process steps, such as metallization. This formed polycrystalline lattice has high surface coverage and is extendable to the wafer scale with an average domain size of about a micrometer. Further studies are needed to increase the domain size toward a single-crystalline large-scale lattice.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available